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Abstract. In this paper we study the problem of estimating the pathwise Lyapunov exponent

for linear stochastic systems with multiplicative noise and constant coefficients. We present a

Lyapunov type matrix inequality that is closely related to this problem, and show under what
conditions we can solve the matrix inequality. From this we can deduce an upper bound for the

Lyapunov exponent.

In the converse direction it is shown that a necessary condition for the stochastic system to
be pathwise asymptotically stable can be formulated in terms of controllability properties of the

matrices involved.
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1. Introduction

Consider, in Rn, the linear SDE

(1)
{
dx(t) = Ax(t) dt+

∑k
i=1Bix(t) dWi(t), t ≥ 0,

x(0) = x0 ∈ Rn,

with A ∈ Rn×n, Bi ∈ Rn×n, i = 1, . . . k and (Wi)ki=1 are independent standard Brownian motions
in R, defined on the filtered probability space (Ω,F , (Ft)t≥0,P). As a special case we will often
consider the equation

(2) dx(t) = Ax(t) dt+Bx(t) dW (t).

It is well known (see e.g. [5]) that for any choice of A, (Bi)ki=1 and x0 a unique solution to (1),
denoted as x(t;x0), exists.

In this paper we are interested in the stability properties of the solution of (1). More specifically,
we want to estimate the pathwise Lyapunov exponent, defined as

(3) λ := lim sup
t→∞

1
t

log |x(t;x0)|, a.s.

In the case of a linear SDE with constant coefficients ‘lim sup’ may be replaced by ‘lim’ (see [2]):

λ = lim
t→∞

1
t

log |x(t;x0)|, a.s.

Some classical references on the theory of Lyapunov exponents of random dynamical systems are
[1] and [11].
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1.1. History of the problem. In 1967 Khas’minskii [7] calculates the Lyapunov exponent (the-
oretically) by rewriting (1) in spherical coordinates as follows. First we write (1) in Stratonovich
form

(4) dx(t) = Ãx(t) dt+
k∑
i=1

Bix(t) ◦ dWi(t),

with Ã = A− 1
2

∑k
i=1B

2
i .

Write y(t) := x(t)/|x(t)| and λ(t) := log |x(t)|, t ≥ 0. Then y is a process on Sn−1, the unit sphere
of dimension n − 1. By using Itô’s formula it may be derived that the differential equations for
y are autonomous: they do not depend on λ(t). By compactness of Sn−1 at least one invariant
measure µ exists for y.

Khas’minskii then assumes a strong non-singularity condition on the (Bi), namely

(5)
k∑
i=1

(Bix)(Bix)T is positive definite for all x ∈ Rn, x 6= 0.

Due to this condition, Py0(y(t) ∈ U) > 0 for all open U ⊂ S1 and (y(t))t≥0 is strong Feller. By an
earlier theorem of Khas’minskii ([6]), µ is therefore the unique invariant measure for (y(t))t≥0 on
Sn−1, and hence it is ergodic.

By Itô’s formula, the process (λ(t))t≥0 can be shown to satisfy

(6) λ(t) = λ(0) +
∫ t

0

Φ(y(s)) ds+
k∑
i=1

∫ t

0

〈Biy(s), y(s)〉 dWi(s) a.s.,

with

(7) Φ(z) := 〈Az, z〉+ 1
2

k∑
i=1

||Biz||2 −
k∑
i=1

〈Biz, z〉2, z ∈ Sn−1.

Now using the strong law of large numbers for martingales (see Theorem A.1 in the stochastic
term in (6) dissappears and by ergodicity of µ (following from the uniqueness of µ)

lim
t→∞

1
t

∫ t

0

Φ(y(s)) ds =
∫
Sn−1

Φ(z) dµ(z) a.s.

We may conclude that

(8) lim
t→∞

1
t

log |x(t)| =
∫
Sn−1

Φ(z) dµ(z) a.s.

As stated above, (5) is stronger than necessary for establishing the uniqueness of the invariant
measure µ on Sn−1. A better understanding of the structure of ergodic invariant measures on
manifolds (e.g. Sn−1) is provided by [8].

In [10], Mao provides a way of estimating the Lyapunov exponent. In the linear case this boils
down to requiring that

(9) 〈Az, z〉 ≤ α and 1
2

k∑
i=1

||Biz||2 −
k∑
i=1

〈Biz, z〉2 ≤ β, z ∈ Sn−1

so that Φ(z) ≤ α+ β, z ∈ Sn−1. Therefore (6) shows that

lim sup
t→∞

1
t

log |x(t)| ≤ α+ β a.s.

This approach can be extended using a Lyapunov function, see [11], Theorem 4.3.3. Note that in
order for β to be negative (in which case the noise has a stabilizing effect), we need that Bi is
non-degenerate, i.e. kerBi = {0} for some i. In this paper we wish to address stabilizing effects
of the noise, even when it is degenerate.
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1.2. Outline of this paper. First we state some preliminary results on deterministic and com-
mutative systems in Section 2. In Section 3 an upper bound for the Lyapunov exponent is obtained
by studying a particular matrix inequality. This is the most important result of this paper. In
Section 4 we obtain a converse result, namely a necessary condition for pathwise stability, i.e.
λ ≤ 0. In Appendix A the strong law of large numbers for martingales is proven.

2. Preliminary results

In this section we briefly mention some result on deterministic and commutative systems, which
will be useful in the remainder of this paper.

2.1. Deterministic systems. For square matrices A and B, let s(A) denote the spectral bound
of A, and r(B) the spectral radius of B, i.e.

s(A) := sup{<λ : λ ∈ σ(A)} and r(B) := sup{|λ| : λ ∈ σ(B)}.

Furthermore let ω0(A) denote the growth bound of A, i.e.

ω0(A) = inf{ω ∈ R : ∃M≥1 s.t. || exp(At)|| ≤Meωt for all t ≥ 0}.

By this definition the Lyapunov exponent for deterministic systems ẋ(t) = Ax(t) is is given by
λ = ω0.

In finite dimensions the following equalities hold:

(10) λ = s(A) = ω0(A) =
1
t

log r (exp(At)) , for all t ≥ 0.

See [4], Proposition IV.2.2 and Theorem IV.3.11.

2.2. Commutative case. As an appetizer, consider the particular case of (1) where A and all
Bi, i = 1, . . . , k commute. Then the solution is given by

x(t) = exp

[
t

(
A− 1

2

k∑
i=1

B2
i

)
+

k∑
i=1

Wi(t)Bi

]
x0 a.s.,

and

1
t

log |x(t)| ≤ 1
t

log |x0|+
1
t

log

∣∣∣∣∣
∣∣∣∣∣
(

exp

(
A− 1

2

k∑
i=1

B2
i

)
t

)∣∣∣∣∣
∣∣∣∣∣+

1
t

k∑
i=1

||Bi|| |Wi(t)|.

Now using the strong law of large numbers for martingales (see Theorem A.1)

lim
t→∞

1
t

k∑
i=1

||Bi|| |Wi(t)| = 0 a.s.,

and using the observations above,

lim
t→∞

1
t

log

∣∣∣∣∣
∣∣∣∣∣
(

exp

(
A− 1

2

k∑
i=1

B2
i

)
t

)∣∣∣∣∣
∣∣∣∣∣ = s

(
A− 1

2

k∑
i=1

B2
i

)
.

Hence we find

(11) lim sup
t→∞

1
t

log |x(t)| ≤ s

(
A− 1

2

k∑
i=1

B2
i

)
, a.s.
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3. Estimating the Lyapunov exponent by means of a matrix inequality

In this section we use the particular Lyapunov function V (x) := 〈Qx, x〉 with Q positive definite,
to obtain an estimate for the pathwise Lyapunov exponent for the solution x of (1). It is shown
that a Lyapunov type inequality for Q can be formulated which gives a sufficient condition for
x to have a particular Lyapunov exponent. In Theorem 3.6 general conditions are formulated
such that a positive definite solution to the mentioned matrix inequality exists. As a corollary we
formulate conditions on A and B such that the solution of (2) has a particular Lyapunov exponent
in Theorem 3.7.

3.1. Proposition. Suppose there exists a positive definite matrix Q ∈ Rn×n and λ ∈ R such that

(12) 〈Qz, z〉

[
2〈QAz, z〉+

k∑
i=1

〈QBiz,Biz〉 − 2λ〈Qz, z〉

]
≤ 2

k∑
i=1

〈Qz,Biz〉2 for all z ∈ Rn.

Then

lim sup
t→∞

1
t

log |x(t)| ≤ λ a.s.,

with x the solution of (1).

Proof: If x0 = 0, then P(x(t) = 0) = 1, t ≥ 0, and the required estimate holds trivially.

Suppose x0 6= 0. Let y(t) := 〈Qx(t), x(t)〉, t ≥ 0. Then by uniqueness of the solution of (1) and
positiveness of Q, P(y(t) = 0) = 0 for all t ≥ 0.

By Itô’s formula and (12),

d log y(t) =
1
y(t)

[
2〈Qx(t), Ax(t)〉 dt+ 2

k∑
i=1

〈Qx(t), Bix(t)〉 dWi(t)

]

−
k∑
i=1

2
y(t)2

〈Qx(t), Bix(t)〉2 dt+
k∑
i=1

1
y(t)
〈QBx(t), Bix(t)〉 dt

=

{
1
y(t)

[
2〈QAx(t), x(t)〉+

k∑
i=1

〈QBix(t), Bix(t)〉

]
−

k∑
i=1

2
y(t)2

〈Qx(t), Bix(t)〉2
}

dt

+
k∑
i=1

2
y(t)
〈Qx(t), Bix(t)〉 dWi(t)

≤ 2λ dt+
k∑
i=1

2
y(t)
〈Qx(t), Bix(t)〉 dWi(t) a.s.

Now by boundedness of 〈Qx(t),Bix(t)〉
〈Qx(t),x(t)〉 , i = 1, . . . , k and the law of large numbers for martingales

(Theorem A.1)

1
t

∫ t

0

2〈Qx(s), Bix(s)〉
y(s)

dWi(s)→ 0 (t→∞), a.s., i = 1, . . . , k,

so

lim sup
t→∞

1
t

log y(t) ≤ 2λ a.s.,

and by positiveness of Q, this implies

lim sup
t→∞

1
t

log |x(t)| ≤ λ a.s.

�
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3.2. Remark. Recall the definition of Φ in (7). If the conditions of Proposition 3.1 hold and we
equip Rn with the inner product

〈x, y〉Q := 〈Qx, y〉, x, y ∈ Rn,
then we see that (12) is equivalent to stating that

ΦQ(z) := 〈Az, z〉Q + 1
2

k∑
i=1

〈Biz,Biz〉Q −
k∑
i=1

〈Biz, z〉2Q ≤ λ

for z ∈ Sn−1
Q := {x ∈ Rn : 〈x, x〉Q = 1}, the unit sphere corresponding to the inner product 〈·, ·〉Q.

So contrary to the setting of Section 1.1, we do not require a unique invariant measure on Sn−1
Q ,

since ΦQ(·) ≤ λ on the entire Q-unit sphere anyway.

3.3. Example. One might ask whether it is at all possible that ΦQ ≤ λ on Sn−1
Q for some but

not all positive definite matrices Q. Already in the deterministic case this can be seen in the next
example, phrased as a proposition:

3.4. Proposition. Let A =
[
α1 1
0 α2

]
with α1, α2 ∈ R eigenvalues of A, and let Q :=

[
1 0
0 q

]
with q > 0. Then for any λ > max(α1, α2) there exists a q such that

〈QAx, x〉 ≤ λ〈Qx, x〉, x ∈ R2,

and consequently
A∗Q+QA− 2λQ ≤ 0.

Here, and in the following, we write “≤” for the partial order induced by the positive cone con-
sisting of positive semidefinite matrices.

Proof: For fixed λ ∈ R and q > 0 we calculate

〈QAx, x〉 − λ〈Qx, x〉 = (α1 − λ)x2
1 + q(α2 − λ)x2

2 + x1x2.

Now since for any γ ∈ R

|x1x2| =
∣∣∣∣ 1γ x1γx2

∣∣∣∣ ≤ ∣∣∣∣ 1γ x1

∣∣∣∣ |γx2| ≤
1

2γ2
x2

1 +
γ2

2
x2

2

holds, we have

〈QAx, x〉 − λ〈Qx, x〉 ≤
(
α1 − λ+

1
2γ2

)
x2

1 + (q(α2 − λ) +
γ2

2
)x2

2,

which is equal to zero for any x1, x2 if

α1 − λ+
1

2γ2
= 0 and q(α2 − λ) +

γ2

2
= 0.

This is satisfied for

γ2 = 2q(λ− α2) and λ =
α1 + α2

2
+

1
2

√
(α1 − α2)2 +

1
q
.

When q →∞ then

λ→ α1 + α2

2
+
|α1 − α2|

2
= max(α1, α2).

�

A counterexample to show that the choice of q matters is given by α1 = α2 = α, q = 1, x1 = x2 =
1
2

√
2. Then

〈QAx, x〉 = α+ 1
2 > max(α1, α2)|x|2.

In the remainder of this section we will establish conditions such that Q and λ exist as required
in Proposition 3.1.
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3.5. Lemma. Suppose there exists a positive definite matrix Q ∈ Rn×n, λ ∈ R and constants
bi ∈ R, i = 1, . . . , k such that

(13)

(
A+

k∑
i=1

biBi

)∗
Q+Q

(
A+

k∑
i=1

biBi

)
+

k∑
i=1

B∗iQBi +

(
1
2

k∑
i=1

b2i − 2λ

)
Q ≤ 0.

Then (12) holds, and hence

(14) lim sup
t→∞

1
t

log |x(t)| ≤ λ, a.s.

Proof: Note that for i = 1, . . . , k, by the abc-formula,

(15)
〈Qx,Bix〉2

〈Qx, x〉2
+ bi
〈Qx,Bix〉
〈Qx, x〉

+
1
4
b2i ≥ 0, for all x ∈ Rn.

So, by Proposition 3.1, if

2〈QAx, x〉+
k∑
i=1

〈QBix,Bix〉 − 2λ〈Qx, x〉 ≤ −
k∑
i=1

2bi〈Qx,Bix〉 −
1
2
b2i 〈Qx, x〉, for all x ∈ Rn,

then the claimed result holds.

But this is equivalent to the stated condition. �

The following theorem gives sufficient conditions in order for a solution to (13) to exist.

3.6. Theorem. Suppose L,Di ∈ Rn×n, i = 1, . . . , k such that∣∣∣∣eLt∣∣∣∣ ≤ meωt for all t ≥ 0,

with m ≥ 1, ω ∈ R, and

(16) m2
k∑
i=1

||Di||2 + 2ω < 0.

Then for any M ∈ Rn×n there exists a unique solution Q ∈ Rn×n to

(17) L∗Q+QL+
k∑
i=1

D∗iQDi = M.

This Q also satisfies

(18) Q =
∫ ∞

0

eL
∗t

(
k∑
i=1

D∗iQDi −M

)
eLt dt.

Furthermore,

(i) if M = 0, then Q = 0,
(ii) if M ≤ 0, then Q ≥ 0, and
(iii) if M < 0 then Q > 0.

Proof: Define a recursion by

Q0 := 0, Qj+1 :=
∫ ∞

0

eL
∗t

(
k∑
i=1

D∗iQjDi −M

)
eLt dt.
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The recursion is actually a contraction, since

||Qj+1 −Qj || =

∣∣∣∣∣
∣∣∣∣∣
∫ ∞

0

eL
∗t

(
k∑
i=1

D∗i (Qj −Qj−1)Di

)
eLt dt

∣∣∣∣∣
∣∣∣∣∣

≤ m2
k∑
i=1

||Di||2
∫ ∞

0

e2ωt dt ||Qj −Qj−1||

= −
m2
∑k
i=1 ||Di||2

2ω
||Qj −Qj−1||.

Note that the recursion is defined such that Qj+1 satisfies

L∗Qj+1 +Qj+1L = M −
k∑
i=1

D∗iQjDi,

a basic result from Lyapunov theory (see e.g. [9]).

Hence there exists a unique fixed point Q ∈ Rn×n that satisfies both (17) and

Q =
∫ ∞

0

eL
∗t

(
k∑
i=1

D∗iQDi −M

)
eLt dt.

If M = 0 then Q = 0 by unicity of the solution.

Now suppose M ≤ 0. Then we can check that the recursion for (Qj) has the property that Qj ≥ 0
for all j. So Q ≥ 0, and (18) shows that

Q ≥ −
∫ ∞

0

eL
∗tMeLt dt.

If M < 0, then there exists a unique P ∈ Rn×n, P > 0 such that M = L∗P + PL. Then

Q ≥ −
∫ ∞

0

eL
∗tMeLt dt = P > 0.

�

Consider now the case of only one noise term, that is equation (2). The following theorem is
the main result on estimation of the Lyapunov exponent. It shows that based on estimates for
A+σB and B+ τI for some constants σ, τ ∈ R, we can estimate the pathwise lyapunov exponent
corresponding to (1).

3.7. Theorem. Suppose h : R→ [1,∞), g : R→ R and f : R→ [0,∞) are functions such that

||exp ((A+ sB)t)|| ≤ h(s) exp(g(s)t) and

||B + sI|| ≤ f(s), s, t ∈ R.(19)

Suppose for some σ, τ, λ ∈ R we have

(20) λ > 1
2 (h(σ − τ)f(τ))2 + g(σ − τ) + 1

4σ
2 − 1

2τ
2.

Then
lim
t→∞

1
t

log |x(t)| ≤ λ a.s.,

where x is the solution to (2).

Proof: For the given combination of σ,τ and λ put

D := B + τI, L := A+ (σ − τ)B + ( 1
4σ

2 − 1
2τ

2 − λ)I.

Note that
||D|| ≤ f(τ) and ||exp(Lt)|| ≤ meωt,
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with m = h(σ−τ) and ω = g(σ−τ)+ 1
4σ

2− 1
2τ

2−λ. Then by (20), condition (16) of Theorem 3.6
is satisfied and hence we can find a Q such that (17) holds for M = −I. By the choice of D and
L, we have

0 ≥M = L∗Q+QL+D∗QD = (A+ σB)∗Q+Q(A+ σB) +B∗QB + ( 1
2σ

2 − 2λ)I,

and it follows that Q is a solution to (13), with b = σ.

Therefore by Lemma 3.5, we may conclude that (14) holds. �

3.8. Example. Consider the particular case whereB = νI, and suppose ω is such that || exp(At)|| ≤
eωt. Then

|| exp((A+ sB)t)|| = || exp(At)|| exp(sνt) ≤ e(ω+sν)t,

and
||B + sI|| = |ν + s|.

So
f(s) = |ν + s|, g(s) = ω + sν, and h(s) = 1,

and we require that

λ > 1
2 (ν + τ)2 + ω + (σ − τ)ν + 1

4σ
2 − 1

2τ
2

= 1
2ν

2 + ω + σν + 1
4σ

2,

with minimizing σ = −2ν, to obtain stability for any λ > ω − 1
2ν

2. We see that in this example
we recover the estimate of the commutative case, (11).

3.9. Example. Let

(21) A =
[
a1 1
0 a2

]
and B =

[
b1 0
0 b2

]
.

Equip R2 by the inner product 〈x, y〉 = x1y1 + qx2y2, with q > 0.

By Proposition 3.4, for all s ∈ R and ε > 0 there exists a q > 0 such that

〈(A+ sB)x, x〉 ≤ (max(a1 + sb1, a2 + sb2) + ε)〈x, x〉,
and therefore

exp((A+ sB)t) ≤ exp([max(a1 + sb1, a2 + sb2) + ε]t), t ≥ 0.

Furthermore ||B + sI|| = max(|b1 + s|, |b2 + s|), irrespective of q.

Hence conditions (19) hold with

h(s) = 1, f(s) = max(|b1 + s|, |b2 + s|), and

g(s) = max(a1 + sb1, a2 + sb2) + ε.

So, by Theorem 3.7, and letting ε by choosing ε arbitrarily small, if we pick

λ > 1
2 max((b1 + τ)2, (b2 + τ)2) + max(a1 + (σ − τ)b1, a2 + (σ − τ)b2) + 1

4σ
2 − 1

2τ
2

= 1
2 max(2b1τ + b21, 2b2τ + b22) + max(a1 + (σ − τ)b1, a2 + (σ − τ)b2) + 1

4σ
2

for some optimal σ and τ , then

lim
t→∞

1
t

log |x(t)| ≤ λ,

when x is the solution of (2).

As a numerical example, let a1 = 1, a2 = −1, b1 = 1 and b2 = 0. By picking τ = 0 and σ = −2,
we see that any λ > 1

2 is an upper bound for the Lyapunov exponent. If a1 = 1, a2 = −1, b1 = 2
and b2 = 0, then by picking τ = −1 and σ = −2 we obtain the estimate λ > 0. We see that the
noise has a stabilizing effect, even though it is degenerate. Now compare these theoretical results
to a simulation (see Figure 3.9). We see that in the case b1 = 1 the estimate is sharp, whereas in
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the case b1 = 2 the graph suggest a Lyapunov exponent of −1, which gives room for even further
theoretical improvements.
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(a) b1 = 1
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(b) b1 = 2

Figure 1: Graph of 1
t log |x(t)| for a sample path of the solution x of (2) with A and B as given

in (21), with a1 = 1, a2 = −1, b2 = 0.

In a subsequent publication ([3]) the approach of this section is extended to infinite dimensional
stochastic evolutions, with as application the case of stochastic differential equations with delay.

4. A necessary condition for pathwise stability

In this section we show that, in order for the solutions of the linear SDE (2) to be pathwise
asymptotically stable, an assumption on the controllability properties of the pair (A,B) is neces-
sary. First we introduce the necessary notions of stability.

4.1. Definition. The stochastic differential equation{
dx(t) = f(x(t), t) dt+ g(x(t), t) dW (t), t ≥ 0,
x(0) = x0

is pathwise asymptotically stable if

lim
t→∞

|x(t;x0)| = 0 almost surely,

and pathwise exponentially stable if

lim sup
t→∞

1
t

log |x(t;x0)| < 0 almost surely

for all initial conditions x0 ∈ Rn.

4.2. Definition. Let A ∈ Rn×n andB ∈ Rn×m. The pair (A,B) is called stochastically stabilizable
if there exists an F ∈ Rm×n such that

(22) dx(t) = Ax(t) dt+BFx(t) dW (t)

is pathwise asymptotically stable.

We would like to establish conditions on (A,B) such that (A,B) is stochastically stabilizable.
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4.3. Definition. The pair (A,B) is called (deterministically) stabilizable if there exists an F ∈
Rm×n such that s(A + BF ) < 0. It is well known that, through pole placement, controllability
implies stabilizability. Stabilizability can be understood as controllability of the unstable part of
A.

We can now state a necessary condition for a system (A,B) to be stochastically stabilizable:

4.4. Theorem. Suppose (A,B) is stochastically stabilizable. Then (A,B) is stabilizable.

This leads directly to the following corollary which is the main result of this section.

4.5. Corollary. Suppose A ∈ Rn×n, B ∈ Rn×n such that the solution of (2) is asymptotically
stable. Then (A,B) is stabilizable.

Proof (of corollary): By taking F = I, we see that (A,B) is stochastically stabilizable. Now
apply the proposition. �

4.6. Example. In the commutative case of Section 2.2, if (A,B) satisfies A− 1
2B

2 is stable, then
(A,B) is stabilizable (by taking F = − 1

2B). Hence the necessary condition for stochastic stability
is satisfied, in agreement with Section 2.2.

In order to prove Theorem 4.4, we need some other notions and results from systems theory. See
[13] for details.

4.7. Controllability, isomorphic systems. Recall that the pair (A,B) is called controllable if

rank
[
B,AB, . . . , An−1B

]
= n.

Here [T1, T2, . . . , Tn] denotes the concatenation of all the columns of matrices T1, . . . , Tn.

µ ∈ C is called (A,B)-controllable if

rank [A− µI,B] = n,

Note that if µ /∈ σ(A), then µ is always (A,B)-controllable.

The system (A,B) is said to be isomorphic to (A,B) if there exists an invertible matrix S such
that

A = S−1AS, B = S−1B.

4.8. Lemma. If µ ∈ σ(A) is not (A,B)-controllable, then µ ∈ σ(A+BF ) for all F ∈ Rm×n.

4.9. Lemma. Suppose (A,B) not controllable and B 6= 0. Then there exist (A,B) isomorphic to
(A,B) such that

A =
[
A11 A12

0 A22

]
, B =

[
B1

0

]
,

and such that (A11, B1) is controllable.

4.10. Lemma. Suppose (A,B) is not controllable and (A,B) is isomorphic to (A,B) such that

A =
[
A11 A12

0 A22

]
, B =

[
B1

0

]
,

with (A11, B1) controllable. Then µ ∈ C is (A,B)-controllable if and only if µ /∈ σ(A22).

Proof of Theorem 4.4: Suppose (A,B) not stabilizable. Then by Lemma 4.8 there exists
µ ∈ σ(A), <µ > 0, such that µ is not (A,B)-controllable. By Lemma 4.9 and Lemma 4.10 there
exist

A =
[
A11 A12

0 A22

]
, B =

[
B1

0

]
,
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isomorphic to (A,B) such that µ ∈ σ(A22). Now x satisfies

(23) dx(t) = Ax(t) dt+BFx(t) dW (t),

if and only if y(t) = Sx(t) satisfies

(24) dy(t) =
[
A11 A12

0 A22

]
y(t) dt+

[
B1

0

]
Fy(t) dW (t),

where F = FS−1.

Let y2 6= 0 such that A22y2 = µy2 and let y1 = 0. Let y be the solution of (24) with initial
condition y(0) = [y1 y2]T , and x = S−1y the corresponding solution of (23). Then

y2(t) = exp(A22t)y2 = exp(µt)y2, a.s.

Hence
||S|| |x(t)| ≥ |Sx(t)| = |y(t)| ≥ |y2(t)| = exp(µt)|y2| a.s.

and therefore
lim sup
t→∞

1
t

log |x(t)| ≥ <µ, a.s.

Hence (A,B) is not stochastically stabilizable. �

Appendix A. Strong law of large numbers for martingales

Some of the proofs in this paper rely on the strong law of large numbers for martingales, which
can be found in [11], Theorem 1.3.4, where it appears without proof. To make our exposition
self-contained we provide the reader with a proof.

A.1. Theorem (Strong law of large numbers for martingales). Let (M(t))t≥0 be a contin-
uous local martingale with M(0) = 0. If

(25) lim sup
t→∞

[M ](t)
t

<∞, a.s.,

then

lim
t→∞

M(t)
t

= 0, a.s.

Proof: Let k,m ∈ N. For n ∈ N, let En denote the event

En :=
{

sup
t≥0
|Mn+1(t)| ≥ n

m
and [Mn+1](∞) ≤ 2kn

}
.

Here Mn denotes the martingale M stopped at time n.

Then by the exponential martingale inequality ([12], Exercise IV.3.16)

P(En) ≤ 2e−
n

4km2 , n ∈ N.

Hence by Borel-Cantelli, P(Ecn, eventually) = 1. Let Ω̃k,m := (Ecn, eventually), and Ωk :=
{[M ](t) ≤ kt for all t ≥ 0}, for k ∈ N.

On Ωk, we have that

[M ]n+1(∞)
n

=
[M ](n+ 1)

n
≤ (n+ 1)k

n
≤ 2k, n ∈ N,

so on Ωk ∩ Ω̃k,m we have that

sup
t≥0
|Mn+1(t)| < n

m
, eventually as n→∞.

In particular, on Ωk ∩ Ω̃k,m, for N ∈ N large enough and t ∈ [n, n+ 1], for n > N , n ∈ N,

|M(t)|
t

=
|Mn+1(t)|

t
≤ |M

n+1(t)|
n

<
1
m
,
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that is
|M(t)|
t

<
1
m

for t large enough.

Note that Ω̃k := ∩mΩ̃k,m has full measure and on Ωk ∩ Ω̃k, for all m ∈ N we have

|M(t)|
t

<
1
m

for t large enough.

Note that, by (25), for all γ > 0 there exists an k ∈ N such that P(Ωk) ≥ 1 − γ. Therefore
Ω̃ := ∪kΩ̃k has full measure and on Ω̃, for all m ∈ N,

|M(t)|
t

<
1
m

for t large enough.
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